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Abstract
In this paper we provide an analytical procedure which leads to a system of
(n − 2)2 polynomial equations whose solutions give the parametrization of the
complex n × n Hadamard matrices. It is shown that in general the Hadamard
matrices depend on a number of arbitrary phases and a lower bound for this
number is given. The moduli equations define interesting geometrical objects
whose study will shed light on the parametrization of the Hadamard matrices,
as well as on some interesting geometrical varieties defined by them.

PACS number: 02.10.Sp

1. Introduction

Quantum information theory whose main source comes from a few astonishing features
in the foundations of quantum mechanics is the theory of information which is carried by
quantum systems from the preparation device to the measuring apparatus in a quantum
mechanical experiment, see, e.g., [29]. Defining new concepts such as entangled states,
teleportation or dense coding one hopes to be able to design and construct new devices, such as
quantum computers, which will be useful in solving many problems ‘unresolvable’ by classical
methods. Recently the mathematical structure which is behind such miracle machines was
better understood by establishing a one-to-one correspondence between quantum teleportation
schemes, dense coding schemes, orthogonal bases of maximally entangled vectors, bases of
unitary operators and unitary depolarizers. The construction procedure will be efficient to the
extent that the unitary bases can be generated, and the construction of these bases makes explicit
use of the complex Hadamard matrices and Latin squares. The Hadamard matrices enter
explicitly in the construction of the so-called shift-and-multiply bases of unitaries consisting
of n2 unitary operators Uij acting on the standard canonical basis {ek} ∈ Cn as

Uij ek = H
j

ikeτ(k,j)
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where H
j

ik are phases, and Hj is a complex Hadamard matrix for every j , and τ is a permutation
on the set (1, 2, . . . , n). See Vollbrecht and Werner [27] and Werner [28] for details. They
also appear in coding theory as ‘nice error bases’ in the form of the Fourier transform, or
more generally, unitary bases of group type, see [18]. It seems that in physics the complex
Hadamard matrices first appeared in quantum optics under the name of symmetric multiports
[17, 24, 26], and they are the simplest examples of the complex Hadamard matrices which can
be realized in the laboratory.

The aim of this paper is to provide a procedure for the parametrization of the complex
Hadamard matrices for an arbitrary integer n. More precisely we will obtain a set of (n − 2)2

equations whose solutions will give all the complex Hadamard matrices of size n. The
complex n-dimensional Hadamard matrices are unitary n × n matrices whose entries have
modulus 1/

√
n.

The term Hadamard matrix has its root in Hadamard’s paper [15], where he gave the
solution to the question of the maximum possible absolute value of the determinant of a
complex n × n matrix whose entries are bounded by some constant, which, without loss of
generality, can be taken equal to unity. Hadamard has shown that the maximum is attained by
complex unitary matrices whose entries have the same modulus and he asked the question if
the maximum can also be attained by orthogonal matrices. These last matrices have come to
be known as Hadamard matrices in his honour, and have many applications in combinatorics,
coding theory, orthogonal designs, quantum information theory, etc, and the standard reference
for the obtained results is Agaian [1].

However, the first complex Hadamard matrices were found by Sylvester [25]. He observed
that if ai, i = 0, 1, . . . , n − 1, denote the solutions of the equation xn − 1 = 0 for a prime
n then the Vandermonde matrix built from ai is unitary and Hadamard. In the same paper
Sylvester found a method for obtaining a Hadamard matrix of size mn if one knows two
Hadamard matrices of order m and n, respectively, by taking their Kronecker product. Soon
after the publication of the paper by Hadamard interest was mainly in real Hadamard matrices
such that the Sylvester contribution fell into oblivion and the complex Hadamard matrices
were much later reinvented in a particular case: only those matrices whose entries are ±1,±i
where i = √−1.

Nevertheless a few other problems apparently unrelated to the complex Hadamard matrices
were those connected with bounds on polynomial coefficients when the indeterminate runs on
the unit circle. They are better expressed in terms of the discrete Fourier transform. For any
finite sequence x = (x0, x1, . . . , xn−1) of n complex numbers, its (discrete) Fourier transform
is defined by

yj = n−1/2
n−1∑
k=0

xk e2iπkj/n j = 0, 1, . . . , n − 1.

If the components xk, yk are such that |xk| = |yk| = 1 for k = 0, 1, . . . , n − 1 the sequence x
is called bi-unimodular. The existence of a bi-unimodular sequence of side n is equivalent to
the existence of a complex circulant Hadamard matrix of side n; a circulant matrix is obtained
by circulating its first row, in our case the components of the vector x/

√
n. Now the Gauss

sequence

xk =
{

e2iπ(ak2+bk)/n a, b ∈ Z, a coprime to n, k = 0, 1, . . . , n − 1 for n odd

ek2iπ/n k = 0, 1, . . . , n − 1 for n even

is a bi-unimodular sequence [7]. The problem of the complete determination of all
bi-unimodular sequences is still open, despite the problem being simpler than the
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parametrization of arbitrary complex Hadamard matrices. However, this approach gave the
first non-trivial examples of the complex Hadamard matrices for n � 6.

A step towards its solution was the reduction of the bi-unimodular problem to the problem
of finding all cyclic n-roots [4], and all cyclic n-roots have been found for 2 � n � 8, see
Björck and Fröberg [5, 6]. The formalism we will develop in this paper is more general,
showing that the parametrization of the complex Hadamard matrices is more complicated than
the finding of all cyclic n-roots. Using our approach we find, e.g., when n = 6, the following
matrix which is not contained in the above solutions

1√
6




1 1 1 1 1 1
1 −1 i −i −i i
1 i −1 eit −eit −i
1 −i −e−it −1 i e−it

1 −i e−it i −1 −e−it

1 i −i −eit eit −1




a matrix that depends on an arbitrary phase.
The parametrization of the complex Hadamard matrices is a special case of a more general

problem: the problem of reconstructing the phases of a unitary matrix from the knowledge of
the moduli of its entries, a problem which was a fashionable one at the end of eighties in the
last century in the high energy physics community, see Auberson [2], Björken and Dunietz [8],
Branco and Lavoura [9], Auberson et al [3]. An existence theorem as well as an estimation for
the number of solutions was obtained in [11]. Particle physicists abandoned the problem when
they realized that for n � 4 there exists a continuum of solutions, i.e. solutions depending on
arbitrary phases—a result that was considered uninteresting from the physical point of view.
In our opinion, the reason was the difficulty of the problem; since the experiments provide only
the squares of the moduli, the first problem is to decide if from the experimental results, which
in the best case generate a doubly stochastic matrix, one can reconstruct a unitary matrix, or a
unistochastic matrix. Only for n = 3 does there exist an unambiguous procedure. For n � 4
there are no known necessary and sufficient conditions to separate the unistochastic matrices
from the doubly stochastic ones [31].

Almost at the same time the complex Hadamard matrices emerged in the construction of
some ∗-subalgebras in finite von Neumann algebras, see Popa [23], de la Harpe and Jones
[16] and Munemasa and Watatani [20]. In the last two papers one constructs the complex
Hadamard matrices not of Sylvester type when n is a prime number such that n ≡ ±1
(mod 4). A little later Haagerup [14] obtained the first example of a six-dimensional matrix
which is not covered by the solutions to cyclic n-roots equations [4].

In this paper we use a few analytic techniques from the operator contraction theory and
the factorization of unitary matrices to obtain a convenient representation of unitary matrices
of arbitrary order n that leads easily to a system of (n − 2)2 trigonometric (or equivalently
polynomial) equations whose solutions give all the complex Hadamard matrices of order n.
Our approach is also useful for finding the real Hadamard matrices, being complementary to
the combinatorial approach almost exclusively used until now.

The paper is organized as follows. In section 2 a theorem showing the existence of the
complex Hadamard matrices for every integer n is stated and an upper bound on the number of
continuum solutions is obtained. Section 3 contains a one-to-one parametrization of unitary
matrices written as block matrices, and in the next section an application of the obtained
formulae is given. In section 5 another parametrization of unitary matrices is given in the
form of a product of n diagonal phase matrices interlaced with n − 1 orthogonal matrices
each one generated by a real vector from R

n. This form is convenient because it leads to a
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simpler form for the moduli equations and at the same time we consider it more appropriate
for designing software packages for solving these equations. In section 6 we show how to
derive the moduli equations as trigonometric equations and give a few particular solutions for
n = 6. In section 7 the problem is reformulated as an algebraic geometry problem and we
show that the parametrization of the Hadamard matrices can produce interesting examples for
many problems currently under study in this field. The paper ends with the conclusions.

2. Existence of complex Hadamard matrices

The complex n-dimensional Hadamard matrices Hn being unitary matrices whose entries
have modulus 1/

√
n, the natural class for looking for the complex Hadamard matrices is the

unitary group U(n). From the definition, it follows that, since the multiplication of a row
and/or a column by an arbitrary phase factor does not change the properties of Hn, we can
remove the phases of a row and column taken arbitrarily, such that in the following Hn will
be a matrix with all the entries of the first row and of the first column positive numbers.
Similarly, we can permute any rows and/or columns and get an equivalent matrix. Besides,
for the Hadamard matrices we will not distinguish between Hn and its complex conjugate
matrix H̄n, the complex conjugation being equivalent to the sign change of all the phases
ϕi → −ϕi entering the parametrization. More generally we shall consider two equivalent
matrices whose phases can be obtained by an arbitrary non-singular linear transformation with
constant rational coefficients. In the following we will consider two equivalent matrices that
can be made equal by applying a finite number of the above transformations on them.

Since a unitary matrix is parametrized by n(n − 1)/2 angles and n(n + 1)/2 phases [10]
we deduce that the number of remaining phases is n(n + 1)/2 − (2n − 1) = (n − 1)(n − 2)/2,
and so the number of free real parameters entering a unitary matrix is reduced from n2 to
n2 − (2n − 1) = (n − 1)2.

The parametrization of a unitary matrix by the moduli of its entries is very appealing,
and in the case of the Hadamard matrices compulsory, although it is not a natural one in
the general case. A natural parametrization would be one whose parameters are free, i.e.
there are no supplementary restrictions upon them to enforce unitarity. In this sense natural
parametrizations are the Euler-type parametrization by Murnagham [21], or that found in [10].

The problem we raised in [11] was to what extent the knowledge of the moduli |aij |
of an n × n unitary matrix An = (aij ) determines An. Implicitly we supposed that An is
parametrized by n2 independent parameters. But from what we said before we know that we
may ignore 2n − 1 phases entering the first row and the first column, and consequently the
number of independent parameters reduces to (n − 1)2, which coincides with the number of
independent moduli implied by unitarity. If we identify the parameters with the moduli they
will be lying within the simple domain

D = (0, 1) × · · · × (0, 1) ≡ (0, 1)(n−1)2

where the above notation means that the number of factors entering the topological product
is (n − 1)2. We excluded only the extremities of each interval, i.e. the points 0 and 1, that is
a zero measure set within U(n) and has no relevance to the parametrization of the complex
Hadamard matrices.

Thus, in principle, we can parametrize an n × n unitary rephasing invariant matrix by the
upper-left corner moduli; we exclude the moduli of the last row and of the last column since they
follow from unitarity. Nothing remains but to check if the new parametrization is one-to-one.
A solution to the last problem is the following: start with a one-to-one parametrization of U(n)

and then change the coordinates taking as new coordinates the moduli of the (n−1)2 upper-left
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corner entries (and 2n − 1 ignorable phases). Afterwards use the implicit function theorem
to find the points where the new parametrization fails to be one-to-one. The corresponding
variety upon which the application is not a bijective one is given by setting to zero the Jacobian
of the transformation. One gets that generically for n � 4 the unitary group U(n) cannot
be fully parametrized by the moduli of its entries, i.e. for a given set of moduli there could
exist a continuum of solutions, but this negative result is good for the parametrization of the
Hadamard matrices by decreasing the number of independent solutions.

If the moduli are outside the above variety an upper bound for the multiplicity is 2
n(n−3)

2 .
However, in the case of the Hadamard matrices the equivalence constraints reduce this number
to lower values than the above upper bound. The bound is saturated for n = 3 when there
is essentially only one complex matrix, i.e. for given moduli values for the first row and
column entries compatible with unitarity, the sole freedom is an arbitrary phase. If we denote
the relevant squared moduli by m1,m2,m3,m4 and the phase by ϕ then the compatibility
condition has the form

−1 � cos ϕ = (−1 + 2m1 − m2
1 + m2 + m3 + m4 − m1m2 − m1m3 − m2m3

− 2m1m4 − m1m2m3m
2
1m4

)/
2
√

m1m2m3(1 − m1 − m2)(1 − m1 − m3) � 1.

This is also the necessary and sufficient condition which the squared moduli mi, i = 1, . . . , 4,
have to satisfy in order to obtain a unistochastic matrix from a general doubly stochastic
matrix. Because unitary matrices of arbitrary dimension do exist and on the other hand the
number of independent essential parameters of a U(n) matrix is (n− 1)2 the following is true:

Theorem 1. Suppose (x1, . . . , xn2) is a coordinate system on the unitary group U(n)

consisting of n(n − 1)/2 angles each taking values in [0, π/2] and n(n + 1)/2 phases taking
values in [0, 2π). By discarding 2n − 1 non-essential phases the number of coordinates
reduces to (n − 1)2, (x1, . . . , x(n−1)2), which coincides with the number of independent
moduli (m1, . . . , m(n−1)2) implied by unitarity. Taking as new coordinates the moduli
mi, i = 1, . . . , (n − 1)2, the new parametrization is generically not one-to-one for n � 4, the
non-uniqueness variety being obtained by setting to zero the Jacobian of the transformation

∂(m1, . . . , m(n−1)2)

∂(x1, . . . , x(n−1)2)
= 0. (1)

Outside this variety the number of discrete solutions Ns satisfies 1 � Ns � 2
n(n−3)

2 and on
the variety described by (1) there is a continuum of solutions, i.e. solutions that depend on
arbitrary phases. In the special case of the complex Hadamard matrices all the solutions are
given by the system of trigonometric equations

m2
i (x1, . . . , x(n−1)2) = 1

n
i = 1, . . . , (n − 1)2. (2)

Suppose we know the irreducible components of the variety (1) and let r(n) be the rank
of the system (2) in every irreducible component, then every solution of (2) in such an
irreducible component will depend upon (n−1)2 − r(n) arbitrary parameters and the number
of (continuum) solutions satisfies 1 � Ns � 2r(n)−1−n(n−1)/2.

Proof. In the general case equations (2) have the form

m2
i

(
x1, . . . , x

2
(n−1)

) = ai where ai ∈ (0, 1) i = 1, . . . , (n − 1)2. (3)

The parameters ai generate a doubly stochastic matrix. Equations (3), as we will see later,
are trigonometric equations in our parametrization, and consequently the multiplicity of the
solutions may arise from the two possible phase solutions for all values of sine or cosine
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functions that satisfy (3). The number of independent phases is (n−1)(n−2)/2 and, since we
do not make any distinction between Hn and H̄ n, where a bar denotes complex conjugation,
a condition which halves the number of solutions, the above bound for Ns follows. A similar
argument establishes the upper bound for the number of continuum solutions. �

For n = 3 the Jacobian is positive and 1 � Ns � 1, which implies the existence of one
complex matrix irrespective of the values ai , compatible with unitarity.

It is easily seen that the equations which correspond to the first row and the first column
entries have a unique solution and the number of equations reduces to (n − 2)2. Indeed,
because these entries are positive we can take the following parametrization in terms of 2n−3
angles, e.g., for the first row

(a11, . . . , a1n) = (cos χ1, sin χ1 cos χ2, . . . , sin χ1 · · · sin χn−1)

and similarly for the first column. Equations (3) give the unique solution

cos2 χk = ak∏k−1
i=1 (1 − ai)

k = 1, 2, . . . , n − 1

where ak = |a1k|2, k = 1, 2, . . . , n − 1. In the case of the Hadamard matrices one gets

cos χk = 1√
n + 1 − k

k = 1, 2, . . . , n − 1

and the same solution for the angles parametrizing the first column. In this way the number of
equations reduces to (n − 1)2 − (2n − 3) = (n − 2)2 and the upper bound for the continuous
solutions may be written as 1 � Ns � 2r(n)−1−(n−2)(n−3)/2, where r(n) is the rank of the
reduced system. Even so the number of equations grows quadratically with n, which shows
that even for moderate values of n the problem is not easy to solve.

In conclusion we have a system of trigonometric equations whose solutions will give
all the complex Hadamard matrices, but to be effective we have to start with a one-to-one
parametrization of unitary matrices in order to find the explicit form of the (n − 2)2 equations
and try to solve them. In the following section we will provide one of the two parametrizations
of unitary matrices that we will use in this paper.

3. Parametrization of unitary matrices

The aim of this section is to provide a one-to-one parametrization of unitary matrices that
will be useful in describing the complex Hadamard matrices. We shall present two such
parametrizations and for the first one we follow closely our paper [10] showing here only the
points which are important in the following. The algorithm we provide is a recursive one,
allowing the parametrization of n × n unitary matrices through the parametrization of lower-
dimensional ones. The parametrization will be one-to-one and given in terms of a(n) angles
taking values in [0, π/2] and ϕ(n) phases taking values in [0, 2π) such that the application

An(An ∈ U(n),AnA
∗
n = In) → E = (0, π/2)a(n)[0, 2π)ϕ(n) ⊂ R

n2

is bijective. In the following the ends of the interval [0, π/2] will be obtained by continuation
in the relevant parameters, if necessary.

The starting point is the partitioning of the matrix An ∈ U(n) into blocks

An =
(

A B

C D

)
. (4)
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For definiteness we suppose the order of A is equal to m with m � n/2. The blocks entering
(4) are contractions as follows from unitarity

AA∗ + BB∗ = Im A∗A + C∗C = Im CC∗ + DD∗ = In−m (5)

where in the following Ik denotes the k × k unit matrix. Suppose we know the contraction A,
then the problem reduces to finding the B,C and D blocks such that An should be unitary. In
other words the problem is knowing a contraction A of side m how we can border it for getting
a unitary n×n matrix An. The complete solution is found in [10]. For any contraction T, with
‖T ‖ � 1, we have T ∗T � IH′ and T T ∗ � IH such that the defect operators

DT = (IH − T ∗T )1/2 DT ∗ = (IH′ − T T ∗)1/2

are Hermitian operators that have the property

T DT = DT ∗T T ∗DT ∗ = DT T ∗. (6)

The most difficult part is to find the D block; it is given by

D = −V A∗U + XMY (7)

such that the following holds.

Lemma 1. The unitary matrix An in equation (4) is given by

An =
(

A DA∗U

V DA −V A∗U + XMY

)
where U and V are two isometries such that B = UDA∗, C = DAV,X and Y are those unitary
matrices that diagonalize the Hermitian defect operators DV ∗ and DU respectively, i.e.

X∗DV ∗X = P Y ∗DUY = P

P is the projection

P =
(

0 0
0 In−2m

)
and the matrix M has the form

M =
(

0 0
0 An−2m

)
where An−2m denotes an arbitrary (n − 2m) × (n − 2m) unitary matrix.

In the above formulae we supposed that the eigenvectors of the DU and DV ∗ operators entering
the matrices X and Y are ordered in increasing order of the eigenvalues.

Therefore the parametrization of an n × n unitary matrix requires the parametrization of
an m×m contraction, of two isometries U and V and of an (n−2m)×(n−2m) unitary matrix.
Taking into account the recursive nature of the form for An we may consider the case m = 1
and provide an explicit algorithm for getting the unitary matrices X and Y. Since for m = 1, A

is the simplest contraction, a complex number whose modulus is less than 1, one finds that
V is an (n − 1)-dimensional vector, and the isometry property allows us to parametrize it as
V = (cos χ1, sin χ1 cos χ2, . . . , sin χ1, . . . , sin χn−2)

t where t denotes the transpose. V is the
eigenvector of DV ∗ corresponding to the zero eigenvalue. Indeed from relations (6) we have

DV ∗V = V DV = 0

showing that V is the eigenvector of DV ∗ corresponding to the zero eigenvalue. Thus the
problem is how to complete an orthogonal matrix X knowing its first column (row) such that
no supplementary parameters enter. The other columns of this matrix we are looking for will
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be given by the other eigenvectors of DV ∗ . One easily verifies that DV ∗ is a projection operator
such that the other eigenvalues equal unity. Indeed the following holds:

Lemma 2. The orthonormalized eigenvectors of the eigenvalue problem

DV ∗vk = λkvk k = 1, . . . , n − 1

are the columns of the orthogonal matrix X ∈ SO(n − 1) and are generated by the vector V

as

v1 =




cos χ1

sin χ1 cos χ2

·
·
·

sin χ1 . . . sin χn−2




and

vk+1 = d

dχk

v1

(
χ1 = · · · = χk−1 = π

2

)
k = 1, . . . , n − 2

where in the above formula one calculates first the derivative and afterwards the restriction
to π/2.

In a similar way one finds Y, see [12] for a proof.
In the case of the n × n Hadamard matrices whose elements of the first row and of the

first column are positive numbers a1j = aj1 = 1√
n
, j = 1, . . . , n,X has the form



1√
n−1

−
√

n−2
n−1 0 0 · · · · · · 0 0

1√
n−1

1√
(n−1)(n−2)

−
√

n−3
n−2 0 · · · · · · 0 0

1√
n−1

1√
(n−1)(n−2)

1√
(n−2)(n−3)

−
√

n−4
n−3 · · · · · · 0 0

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
1√
n−1

1√
(n−1)(n−2)

1√
(n−2)(n−3)

1√
(n−3)(n−4)

· · · · · · 1√
6

− 1√
2

1√
n−1

1√
(n−1)(n−2)

1√
(n−2)(n−3)

1√
(n−3)(n−4)

· · · · · · 1√
6

1√
2




and Y = Xt , where t denotes the transpose.
In this way all the quantities entering formula (7) are known and the parametrization of An

can be obtained recursively starting with the known parametrization of 2 × 2 unitary matrices.
When the block A is one dimensional, i.e. a simple number equal to 1/

√
n, the term V A∗U

entering equation (7) has the form 1
(n−1)

√
n
J , where J is the (n − 1) × (n − 1) matrix each of

whose entries is +1, which appears in many constructions of the real Hadamard matrices, see
Agaian [1].

4. Application

In the following we will use the results of lemma 1 to generalize to the case of the complex
Hadamard matrices the tricks used by Sylvester [25] and Hadamard [15] for constructing the
complex Hadamard matrices. We take n an even number, n = 2m, and we suppose that we
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know a parametrization of the A block which is unitary and whose order is m. In that case
the B and C blocks are also unitary matrices of order m and we consider them normalized as
AA∗ = BB∗ = CC∗ = Im. From (7) we have D = −CA∗B and the matrix

1√
2

(
A B

C −CA∗B

)
will be unitary by construction. In general, the above matrix will not be Hadamard even when
A,B and C are, as the simplest example shows; this happens only when either C = A or
B = A. Since the second case is obtained by transposing the matrix of the first one, as long
as B and C are arbitrary, we will consider only the matrix

1√
2

(
A B

A −B

)
(8)

which is the elementary two-dimensional array that will be used in the construction of more
complicated arrays of the Hadamard matrices. In the following we suppose that A and B
are the complex Hadamard matrices of size m each depending on p � 0 and q � 0 free
phases, respectively, i.e. (8) is a complex Hadamard matrix of size 2m. Now we make use
of Hadamard’s trick to get a Hadamard matrix depending on p + q + m − 1 arbitrary phases.
Indeed we can multiply B at left by the diagonal matrix d = (1, eiϕ1 , . . . , eiϕm−1) without
modifying the Hadamard property. In this way Hadamard obtained a continuum of solutions
for the case n = 4. We denote B1 = d · B and then the matrix

1√
2

(
A B1

A −B1

)
(9)

will be unitary and Hadamard depending on p + q + m − 1 parameters. From (9) we obtain
in general two non-equivalent 2m × 2m Hadamard matrices when B 	= B∗. In this case
equation (9) is a realization and the second one is given by B1 → B2 = d · B∗. The above
procedure can be iterated by taking the matrix (8) as a new A block obtaining a Hadamard
matrix of the form

1

2




A B C D

A −B C −D

A B −C −D

A −B −C D


 (10)

which is a 4m-dimensional array similar to the Williamson array [30], and so on. In
contradistinction to the Williamson array the A,B,C,D blocks satisfy no supplementary
conditions, except their unitarity. Thus the following holds:

Proposition 1. If the m × m complex Hadamard matrices A,B,C,D depend on p, q, r, s

arbitrary phases then there exists a complex Hadamard matrix of the form (10) which depends
on p + q + r + s + 3(m − 1) arbitrary phases.

We note that the elementary array (8) is different from the Goethals–Seidel one [13] which
appears in the construction of the real Hadamard matrices and which has the form

1√
2

(
A B

B −A

)
.

The above array is not unitary even when A and B are, the supplementary condition for unitarity
being the relation AB∗ = BA∗. We consider that the form (8) could also be useful for the study
of orthogonal designs and real Hadamard matrices, it being in some sense complementary to
the above form.
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As an application of formula (10) we consider the following case: a11 = a12 = a21 =
−a22 = b11 = b12 = c11 = c12 = d11 = d12 = 1/

√
2 and b21 = −b22 = eis/

√
2, c21 =

−c22 = eit /
√

2, d21 = −d22 = eiu/
√

2 where the notation is self-explanatory, and we obtain
an eight-dimensional Hadamard matrix depending on three arbitrary phases s, t, u.

When A = B, equation (8) can be written as

1√
2

(
A A

A −A

)
= 1√

2

(
1 1
1 ε

)
⊗ A (11)

where ε = −1, i.e. the first factor is the Sylvester–Vandermonde matrix of the second roots of
unity, and ⊗ is the ordinary Kronecker product, A ⊗ B = [aijB]; of course the first factor can
be any complex Hadamard matrix of order m. Now we want to define a new product, the aim
being a more general construction of the Hadamard matrices. Let M and N be two matrices of
the same order m whose elements are matrices Mij of order n and Nkl of order p, respectively.
The new product denoted by ⊗̃ is given as

Q = M⊗̃N

which is a matrix of order mnp, where

Qij =
k=m∑
k=1

Mik ⊗ Nkj .

We will use the above formula only in the case M = mij , where mij are complex scalars, not
matrices, and N is an arbitrary diagonal matrix N = (N11, . . . , Nmm), where Nii are matrices
of order p obtaining

Q =




m11N11 · · m1mNmm

· · · ·
· · · ·

m1mN11 · · mmmNmm


 (12)

Thus the following is true.

Proposition 2. If the matrices M and Nii, i = 1, . . . , m, are Hadamard so will be the matrix
Q given by equation (12).

The order of Q is mp and formula (12) is new even for real Hadamard matrices. This form is
the most general array we have obtained and in some sense (12) is the natural generalization
of Williamson arrays to the case of complex Hadamard matrices.

If in the above relation we take m11 = m12 = m21 = −m22 = 1/
√

2 and N11 = A and
N22 = B, then equation (12) reduces to equation (8).

Example 1. If now mij are the same as above and

N11 = 1

2




1 1 1 1
1 1 −1 −1
1 −1 −eis eis

1 −1 eis −eis




is the complex four-dimensional Hadamard matrix and

N22 = 1

2




1 0 0 0
0 eit 0 0
0 0 eiu 0
0 0 0 eiv







1 1 1 1
1 1 −1 −1
1 −1 −eiy eiy

1 −1 eiy −eiy
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we obtain an eight-dimensional matrix depending now on five arbitrary phases s, t, u, v, y

instead of three as in the preceding example obtained by using the Williamson-type array (12).

Thus the following holds.

Proposition 3. If M,Ni, i = 1, . . . , m, are m×m and n×n-dimensional complex Hadamard
matrices, respectively, depending on m and ni arbitrary phases, respectively, then there is an
array of the form (12) that depends on

m + n1 + (m − 1)

m∑
i=2

ni

free phases.

The above example shows the necessity for getting upper and lower bounds on the number
of arbitrary phases entering a Hadamard matrix of size N. Taking into account the standard
decomposition of any integer in the form N = p

q1
1 · · · pqm

m , where p1 < · · · < pm are primes
and q1 · · · qm their respective powers, we may use proposition 3 for obtaining lower bounds
on the number of free phases, which we shall denote by ϕ(N). Since until now there does
not exist an example of a Hadamard matrix of size N with N prime which depends on free
phases, in the following we will consider the normalization ϕ(N) = 0, for N prime. Thus the
following holds.

Theorem 2. Let N = p
q1
1 be the power of a prime p1, with q � 2. Then a lower bound

for ϕ
(
p

q1
1

)
, the number of free phases entering the parametrization of the N × N complex

Hadamard matrix, is given by

ϕ
(
p

q1
1

) = 1 + [(p1 − 1)(q1 − 1) − 1]pq1−1
1 .

If N = p
q1
1 · · · pqm

m = p
q1
1 N1 then ϕ

(
p

q1
1 N1

)
is given by

ϕ
(
p

q1
1 N1

) = 1 + [(p1 − 1)q1N1 − p1]pq1−1
1 + ϕ(N1)p

q1
1 .

Proof. Using proposition 3 we find the recurrence relation

ϕ
(
p

q1
1

) = p1ϕ
(
p

q1−1
1

)
+ (p1 − 1)

(
p

q1−1
1 − 1

)
with the initial condition ϕ(p1) = 0 and the solution follows.

In the second case the recurrence relation reads

ϕ
(
p

q1
1 N1

) = p1ϕ
(
p

q1−1
1 N1

)
+ (p1 − 1)

(
p

q1−1
1 N1 − 1

)
and the initial condition can be taken as

ϕ(p1N1) = p1ϕ(N1) + (p1 − 1)(N1 − 1)

and the solution follows. The above recurrence relation allows us to obtain lower bounds for
any integer N in the form

ϕ
(
p

q1
1 · · · pqm

m

) = 1 +
[
(p1 − 1)q1p

q2
2 · · · pqm

m − p1
]
p

q1−1
1

+ p
q1
1

{
1 +

[
(p2 − 1)q2p

q3
3 · · ·pqm

m − p2
]
p

q2−1
2

}
+ p

q2
2

{
1 +

[
(p3 − 1)q3p

q4
4 · · ·pqm

m − p3
]
p

q3−1
3

}
+ p

q3
3

{
1 + · · · + p

qm−1
m−1

{
1 + [(pm − 1)qm − pm]pqm−1

m

}
+ p

qm−1
m−1

{
1 + [(pm − 1)(qm − 1) − 1]pqm−1

m

} · · · }. �

We give now a few examples.
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Example 2. If N = p
q1
1 p

q2
2 then the lower bound for ϕ

(
p

q1
1 p

q2
2

)
, the number of free phases

entering the parametrization of the N × N complex Hadamard matrix, is given by

ϕ
(
p

q1
1 p

q2
2

) = 1 + (p1 − 1)q1p
q1−1
1 p

q2
2 + [(p2 − 1)(q2 − 1) − 1]pq1

1 p
q2−1
2 . (13)

Numerical examples: ϕ(23) = 5, ϕ(24) = 17, ϕ(25) = 49, ϕ(6) = 2, ϕ(32) = 4, ϕ(33) =
28, ϕ(223) = 9, ϕ(2232) = 49, ϕ(225) = 17, ϕ(52) = 16, ϕ(235) = 53, ϕ(42) = 44, etc.

5. Another parametrization of unitary matrices

In the following we will present another parametrization of unitary matrices [12] in the
form of a product of n diagonal matrices containing phases interlaced with n − 1 orthogonal
matrices each generated by a real vector v ∈ R

n. This new form will be more appropriate for
design and implementation of the software packages necessary for solving equations (2) for
arbitrary n.

It is easily seen that we can write any unitary matrix as a product of two diagonal matrices
of the form dn = (eiϕ1 , . . . , eiϕn) with ϕj ∈ [0, 2π), j = 1, . . . , n, arbitrary phases and a
unitary matrix with positive elements in the first row and the first column. We also make the
notation dn−k

k = (1n−k, eiψ1 , . . . , eiψk ), k < n, where 1n−k means that the first (n−k) diagonal
entries equal unity, i.e. it can be obtained from dn by making the first n − k phases equal zero.
These diagonal phase matrices are the first building blocks in our construction. Other building
blocks that will appear in the factorization of unitary matrices An are the two-dimensional
rotations which operate in the i, i + 1-plane of the form

Ji,i+1 =




Ii−1 0 0

0
cos θi −sin θi

sin θi cos θi

0

0 0 In−i−1


 i = 1, . . . , n − 1. (14)

The factorization idea comes from the well-known fact that U(n) acts transitively on the
n-dimensional complex sphere S2n−1 ∈ C

n, and explicitly from the coset relation

S2n−1 = coset space U(n)/U(n − 1).

A direct consequence of the last relation is that we expect that any element of U(n) should
be uniquely specified by a pair of a vector v ∈ S2n−1 and an arbitrary element of U(n − 1).
Thus we are looking for a factorization of an arbitrary element An ∈ U(n) in the form

An = Bn ·
(

1 0
0 An−1

)
where Bn ∈ U(n) is a unitary matrix whose first column is uniquely defined by a vector
v ∈ S2n−1, but otherwise arbitrary, and An−1 is an arbitrary element of U(n − 1). Iterating
the previous equation we arrive at the conclusion that an element of U(n) can be written as a
product of n unitary matrices

An = Bn · B1
n−1 · · · Bn−1

1

where

Bk
n−k =

(
Ik 0
0 Bn−k

)
Bk, k = 1, . . . , n − 1, are k × k unitary matrices whose first columns are generated by vectors
bk ∈ S2k−1; for example Bn−1

1 is the diagonal matrix (1, . . . , 1, eiϕn(n+1) ).
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The still arbitrary columns of Bk will be chosen in such a way that we should obtain a
simple form for the matrices Bn−k

k , and we require that Bk should be completely specified by
the parameters entering the vector bk and nothing else.

Thus it follows that Bn(Bn−k) can be written as

Bn = dnB̃n

where the first column of B̃n has non-negative entries.
Denoting this column by v1 we will use the parametrization

v1 = (cos θ1, cos θ2 sin θ1, . . . , sin θ1 · · · sin θn−1)
t

where θi ∈ [0, π/2], i = 1, . . . , n − 1. Thus Bn will be parametrized by n phases and n − 1
angles. According to the above factorization B̃n is nothing other than the orthogonal matrix
generated by the vector v1 and its form is given by lemma 2 with n → n + 1. Thus without
loss of generality Bn = dnOn with On ∈ SO(n). In this way the factorization of An will be

An = dnOnd
1
n−1O1

n−1 · · · dn−2
2 On−1

2 dn−1
1 In (15)

where Ok
n−k has the same structure as Bk

n−k , i.e

Ok
n−k =

(
Ik 0
0 On−k

)

and dk
n−k = (1, . . . , 1, eiφ1 , . . . , eiφn−k ).

The orthogonal matrices On can be factored in terms of Ji,i+1 as follows:

Lemma 3. The orthogonal matrices On

(
Ok

n−k

)
in their turn can be factored into a product of

n − 1 (n − k − 1) matrices of the form Ji,i+1; e.g. we have

On = Jn−1,nJn−2,n−1 · · · J1,2

where Ji,i+1 are n × n rotations introduced by equation (14).

In this way the parametrization of unitary matrices reduces to a product of simpler
matrices: diagonal phase matrices and two-dimensional rotation matrices. For more details see
[12]. Now we propose a disentanglement of the angles and phases entering each ‘generation’
and denote the angles by Latin letters, e.g., those that parametrize On will be denoted by
a1, . . . , an−1, the angles that parametrize O1

n−1, by b1, . . . , bn−2, etc, the last angle entering
On−1

2 by z1. The phases will be denoted by Greek letters; e.g., the phases entering d1 will be
denoted by α1, . . . , αn, those entering d1

n−1 by β1, . . . , βn−1, etc. The above factorization will
be used in the next section for obtaining the equations for the moduli of the matrix elements.

6. Explicit equations of the moduli

Our choice for the orthogonal vectors in lemma 2 was such that the resulting matrix should
have as many zero entries as possible. Thus On has (n − 1)(n − 2)/2 zeros in the right-upper
corner and the entries of the Hadamard matrix will become more and more complicated when
going from left to right and from top to bottom. We will start using the form (15) of the unitary
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matrix and then dn ≡ In. Since the first column has the form ai1 = 1/
√

n, i = 1, . . . , n, and
d1

n−1 = (1, eiα, eiα1 , . . . , eiαn−2) the product Ond
1
n−1 is




1√
n

−
√

n−1
n

eiα 0 0 · · · 0 0

1√
n

eiα√
n(n−1)

−
√

n−2
n−1 eiα1 0 · · · 0 0

1√
n

eiα√
n(n−1)

eiα1√
(n−1)(n−2)

−
√

n−3
n−2 eiα2 · · · 0 0

· · · · · · ·
· · · · · · ·
· · · · · · ·
1√
n

eiα√
n(n−1)

eiα1√
(n−1)(n−2)

eiα2√
(n−2)(n−3)

· · · eiαn−3√
6

−eiαn−2√
2

1√
n

eiα√
n(n−1)

eiα1√
(n−1)(n−2)

eiα2√
(n−2)(n−3)

· · · eiαn−3√
6

eiαn−2√
2




(16)

where α, αi, i = 1, . . . , n − 2, are n − 1 arbitrary phases.
The next building block O1

n−1d
2
n−2 will have the form




1 0 0 · 0
0 cos a −sin a eiβ · 0
0 sin a cos a1 cos a cos a1 eiβ · 0
· · · · ·
· · · · ·
0 sin a · · · sin an−3 cos a sin a1 · · · sin an−3 eiβ · cos an−3 eiβn−3




(17)

in terms of n − 2 phases β, β1, . . . , βn−3 and n − 2 angles a, a1, . . . , an−3, and so on.
It is easy to see that the first two columns of the product of matrices (16) and (17) do not

change when multiplied by O2
n−2d

3
n−3; however, the first row does. If the angles entering O2

n−2
are denoted by b, b1, . . . , bn−4 and the phases are γ, γ1, . . . , γn−4, etc, then the entries of the
first row are

a12 = −
√

n − 1

n
cos a eiα a13 =

√
n − 1

n
sin a cos b ei(α+β) · · ·

a1n−1 = (−1)n−1

√
n − 1

n
sin a sin b · · · cos z ei(α+β+···+ω)

where z and ω are the last angle and phase respectively. Since we use the standard form of
the Hadamard matrices, i.e. the entries of the first row and of the first column are positive and
equal 1/

√
n, the above equations imply

α = β = · · · = ω = π cos a = 1√
n − 1

cos b = 1√
n − 2

· · · cos z = 1√
2
.

We substitute the above values in equation (15) and find a complex n × n matrix
depending on (n − 1)(n − 2)/2 phases α1, . . . , αn−2, β1, . . . , ψ1 and (n − 2)(n − 3)/2 angles
a1, . . . , an−3, b1, . . . , y1, i.e. (n − 2)2 parameters which have to be found by solving the
corresponding equations given by the moduli. The first simplest entries of the unitary matrix
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have the form

a22 = − 1

(n − 1)
√

n
− n − 2

n − 1
cos a1 eiα1 , . . .

ak2 = − 1

(n − 1)
√

n
+

√
n − 2

n − 1

(
cos a1 eiα1

√
(n − 1)(n − 2)

+ · · · +
sin a1 · · · cos ak−2 eiαk−2

√
(n − k + 2)(n − k + 1)

−
√

n − k

n − k + 1
sin a1 · · · sin ak−2 cos ak−1 eiαk−1

)
k = 3, . . . , n − 1

a2k = − 1

(n − 1)
√

n
+

√
n − 2

n − 1

(
cos a1 eiα1

√
(n − 1)(n − 2)

− sin a1 cos b1 ei(α1+β1)

√
(n − 2)(n − 3)

+ · · ·

+ (−1)k−1

√
n − k

n − k + 1
sin a1 sin b1 · · · cos l(k)1 ei(α1+β1+···+λ(k)1)

)
etc

(18)

where l(k) and λ(k) denote the angle and phase corresponding to index k respectively and the
signs in the last bracket alternate.

The matrix elements become more complicated when going from the upper left corner
to the bottom right corner. The entries a22, a32 and a23 lead, for example, to the following
moduli equations:

(n − 2) cos2 a1 +
2√
n

cos a1 cos α1 − 1 = 0

sin a1

(
(n − 3) sin a1 cos2 a2

+ 2

√
n − 3

n − 1
cos a2

(
cos α2√

n
− cos a1 cos(α1 − α2)

)
− sin a1

)
= 0

sin a1

(
(n − 3) sin a1 cos2 b1

+ 2

√
n − 3

n − 1
cos b1

(
−cos(α1 + β1)√

n
+ cos a1 cos β1

)
− sin a1

)
= 0

(19)

and so on. The form of the last two equations was obtained after the elimination of the
term containing cos a1 cos α1 by using the first equation (19), i.e. we work in the ideal
generated by the moduli equations. It is easily seen that the other equations contain as
factors sin a2, . . . , sin an−2, sin b1, . . . , etc. Thus a particular solution can be obtained when

sin a1 = 0

which implies a1 = 0, π , and from the first equation (19) we get

cos α1 = ± (n − 3)
√

n

2
.

It is easily seen that the above equation has solution only for n = 2, 3, 4; for n � 5 the factor
sin a1 will be omitted from equations (19) because then a1 	= 0, π . When n = 2 we obtain
α1 = π/4, so a22 = −1/

√
2. If n = 3, then α1 = 3π/2 and from the first equation (18) one

gets
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a22 = − 1

2
√

3
+

i

2
= 1√

3
e

2π i
3 etc.

The case n = 4 leads to α1 = π which gives

a22 = −a23 = −a32 = 1

2
and a33 = −a34 = −ei(α2+β1)

2
.

After the substitution α2 + β1 = t one finds the standard complex form of the 4 × 4 matrix
found by Hadamard. To view the origin of the phase α2 + β1 we have to look at the moduli
equations. They have the form

2 cos2 a1 + cos a1 cos α1 − 1 = 0

sin a1(cos α2 − 2 cos a1 cos(α1 − α2)) = 0

sin a1(2 cos a1 cos β1 − cos(α1 + β1)) = 0

cos 2a1 cos(α1 − α2) cos β1 + cos a1 cos(α2 + β1) + sin(α1 − α2) sin β1 = 0

and we see that the above system splits into two cases. In the first case, when sin a1 = 0, the
rank of the system is 2, which explains the above dependence of a33 on two phases, and in
the second case when sin a1 	= 0 the rank is 3 and the dependence is only on one arbitrary
phase. However, in this case there is no final difference between the two cases. The solution
of the above system is obtained directly but for n � 5 the problem is difficult and needs more
powerful techniques. Particular solutions can be obtained rather easily, e.g., for n = 6 there is
a matrix that has the property aij = aji :

1√
6




1 1 1 1 1 1
1 −1 −1 1 i −i
1 −1 −i −1 1 i
1 1 −1 −i −1 i
1 i 1 −1 −1 −i
1 −i i i −i −1




.

There even exists a Hermitian matrix S = S∗

1√
6




1 1 1 1 1 1
1 −1 i i −i −i
1 −i −1 1 −1 i
1 −i 1 −1 i −1
1 i −1 −i 1 −1
1 i −i −1 −1 1




and so on. As we said before, getting the most general form of a solution is not a simple task;
for n = 6 we have 16 complicated trigonometric equations to solve. Thus new approaches are
necessary and in the next section we suggest such an approach, using methods from algebraic
geometry.

7. Connection with algebraic geometry

Equations (19) can be transformed into polynomial equations by the known procedure

sin a → 2x

1 + x2
cos a → 1 − x2

1 + x2



Some results on the parametrization of complex Hadamard matrices 5371

such that we get from (19)

p1 =
[(

n − 3 +
2√
n

)
x4

1 − 2(n − 1)x2
1 +

(
n − 3 − 2√

n

)]
y2

1

+

(
n − 3 − 2√

n

)
x4

1 − 2(n − 1)x2
1 +

(
n − 3 +

2√
n

)

p2 =
{[

−
(

1 − 1√
n

)
x2

1 + C1x1 +

(
1 +

1√
n

)]
x4

2 − C2x1x
2
2 +

(
1 − 1√

n

)
x2

1 + C1x1

−
(

1 +
1√
n

)}
y2

1y
2
2 +

{[(
1 − 1√

n

)
x2

1 + C1x1 −
(

1 +
1√
n

)]
x4

2 − C2x1x
2
2

−
(

1 − 1√
n

)
x2

1 + C1x1 +

(
1 +

1√
n

)}
y2

1 +

{[(
1 +

1√
n

)
x2

1 + C1x1

−
(

1 − 1√
n

)]
x4

2 − C2x1x
2
2 −

(
1 +

1√
n

)
x2

1 + C1x1 +

(
1 − 1√

n

)}
y2

2

− 4
(
1 − x2

1

)(
1 − x4

2

)
y1y2 +

[
−

(
1 +

1√
n

)
x2

1 + C1x1 +

(
1 − 1√

n

)]
x4

2

−C2x1x
2
2 +

(
1 +

1√
n

)
x2

1 + C1x1 −
(

1 − 1√
n

)

p3 =
{[

−
(

1 − 1√
n

)
x2

1 + C1x1 +

(
1 +

1√
n

)]
x4

3 − C2x1x
2
3 +

(
1 − 1√

n

)
x2

1 + C1x1

−
(

1 +
1√
n

)}
y2

1y
2
3 +

{[(
1 − 1√

n

)
x2

1 + C1x1 −
(

1 +
1√
n

)]
x4

3 − C2x1x
2
3

−
(

1 − 1√
n

)
x2

1 + C1x1 +

(
1 +

1√
n

)}
y2

1 +

{[
−

(
1 − 1√

n

)
x2

1 + C1x1

+

(
1 − 1√

n

)]
x4

3 − C2x1x
2
3 +

(
1 +

1√
n

)
x2

1 + C1x1 −
(

1 − 1√
n

)}
y2

3

− 4
(
1 + x2

1

)(
1 − x4

3

)
y1y2 +

[(
1 +

1√
n

)
x2

1 + C1x1 −
(

1 − 1√
n

)]
x4

3

−C2x1x
2
3 −

(
1 +

1√
n

)
x2

1 + C1x1 +

(
1 − 1√

n

)
where

C1 = (n − 1)(n − 4)√
(n − 1)(n − 3)

C2 = 2(n − 1)(n − 2)√
(n − 1)(n − 3)

and the angles by the above transformation go to x1, x2, x3, . . . and the phases to y1, y2, y3, . . . .
From the matrices such as (16) one sees that the full set of the (n− 2)2 equations contains

square roots of almost all prime numbers � n so that not all the coefficients are rational and
we have to look for solutions in a field Q(

√
d) for some d ∈ N.

The polynomial equation p1 = 0 defines an algebraic curve; however, the most studied are
the elliptic and hyperelliptic curves, i.e. those defined by an equation of the form y2 = fp(x),
where fp(x) is a polynomial of degree p.
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From p1 = 0 we get

y2
1 = −

(
n − 3 − 2√

n

)
x4

1 − 2(n − 1)x2
1 +

(
n − 3 + 2√

n

)
(
n − 3 + 2√

n

)
x4

1 − 2(n − 1)x2
1 +

(
n − 3 − 2√

n

) = −P1(x1)

P2(x1)

which defines a meromorphic function. Its zeros and poles are simple,

±
√√

n − 1√
n + 1

±
√

n +
√

n − 2

n − √
n − 2

and

±
√ √

n + 1√
n − 1

±
√

n − √
n − 2

n +
√

n − 2

and the poles and the zeros are interlaced. Thus apparently the above equation is not
hyperelliptic. However, by the birational transformation

y1 = Y1

P2(x1)

we get the equation

Y 2
1 = −P1(x1)P2(x1)

which shows that the above curve has genus g = 3. For n � 5 the curve has no branch going
to infinity since the highest power coefficient is negative and consequently the curve is made
of three ovals.

The polynomials p1 = p2 = 0 define a surface, p1 = p2 = p3 = 0 define a three-
dimensional variety and so on. We consider that the study of these multi-dimensional varieties
will be very interesting from the algebraic geometry point of view, and their parametrizations
could reveal unknown properties that may lead to a better understanding of the rational
varieties. As we saw in section 4 one can easily construct parametrizations of the Hadamard
matrices depending on a number of free phases at least for a non-prime n. This means that the
set of moduli equations has to be split into some subsets and for each such subset the solutions
are in the k-dimensional torus T k = S1 ⊗ · · · ⊗ S1︸ ︷︷ ︸

k factors

, where k is the number of arbitrary phases

parametrizing the considered subset. But this could be equivalent to the existence of a rational
parametrization for the equations defining this subset. Unfortunately the best-studied case
and the best results are for algebraic curves; see [19], theorem 14, for a flavour of recent
results. The study of surfaces, three-dimensional varieties, etc is at the beginning and until
now the theory was developed only for the simplest varieties, the so-called rationally connected
varieties [19]. From what we said before one may conclude that the parametrization of complex
Hadamard matrices could be an interesting example of the parametrization of meromorphic
varieties, which could be a mixing between a rational parametrization and a parametrization
of hyperelliptic curves. Thus the theoretical instrument for the parametrization of complex
Hadamard matrices seems to exist, the challenging problem being the transformation of the
existing theorems into a symbolic manipulation software program able to find after a reasonable
computing time explicit solutions at least for moderate values of n.

8. Conclusion

All the results obtained for complex Hadamard matrices can be used for the construction of
real Hadamard matrices, the only supplementary constraint being the natural one n = 4m.
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We believe that the Hadamard conjecture can be solved in our formalism since unlike the
classical combinatorial approach we also have at our disposal (n − 1)(n − 2)/2 phases, and
the problem is to guess the pattern of 0 and π taken by them.

Conversely many constructions from the theory of the real Hadamard matrices can be
extended to the complex case. For example, a complex conference matrix will be a matrix
with aii = 0, i = 1, . . . , n, and |aij | = 1/

√
n such that

WW ∗ = n − 1

n
.

It is not difficult to construct complex conference matrices; in fact it is a simpler problem
than the construction of the complex Hadamard matrices because the equations aii = 0,

i = 2, . . . , n − 1, imply the determination of 2(n − 2) parameters which simplify the other
equations.

We give a few examples:

W4 = 1

2




0 1 1 1
1 0 −eit eit

1 eit 0 −eit

1 −eit eit 0




and

W6 = 1√
6




0 1 1 1 1 1
1 0 −eiα −eiα eiα eiα

1 −eiα 0 eiα −ei(α−β) ei(α−β)

1 −eiα eiα 0 ei(α−β) −ei(α−β)

1 eiα −ei(α+β) ei(α+β) 0 −eiα

1 eiα ei(α+β) −ei(α+β) −eiα 0




where the second depends on two arbitrary phases. They are useful because if Wn is a complex
conference matrix then

M2n = 1√
2


Wn + In√

n
W ∗

n − In√
n

Wn − In√
n

−W ∗
n − In√

n




is a complex Hadamard matrix of order 2n.
In this paper we have used convenient parametrizations of unitary matrices that allowed

us to get a set of (n − 2)2 polynomial equations whose solutions will give all the possible
parametrizations for the Hadamard matrices. Unfortunately the system is very complicated
and only particular solutions have been found; thus from a pragmatic point of view the most
important issue would be the design of software packages for solving these equations.
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[5] Björck G and Fröberg R 1991 A faster way to count the solutions of inhomogeneous systems of algebraic
equations, with applications to cyclic n-roots J. Symb. Comput. 12 329–36
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[11] Diţă P 1994 Parameterisation of unitary matrices by moduli of their elements Commun. Math. Phys. 159 581–91
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